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We study the state of stress in an elastic half-plane in the presence of phase trans- 

formations caused by temperature variations at the points of the half-plane. Sepa- 

rately we consider the states of stress caused by the lack of homogeneity in the 
temperature field and the consequent volume changes taking place in the regions 

of phase transformations. 

Under the term “phase transformation” we understand the structural change in 

the crystal lattice which occurs when the body is heated above a certain critical 

temperature [ 1, 21. Here the purely thermal stresses are accompanied by the 
stresses associated with the volume change in the region undergoing phase trans- 

formations. Similar problems arise during the investigation of the stress states 

in the case of elastic tension and in the problems on inclusions. Such problems 
were studied by D, I. Sherman, Iu. A. Amen-Zade,and others. However in all the 

problems studied the region occupied by an inclusion was always completely con- 

tained within some external region. 
The present paper deals with the case in which the boundary separating the 

media has common points with the outer boundary of the region containing the in- 

clusion. The stresses and strains are assumed to satisfy the conditions of the lin- 

ear theory of elasticity, with the external region and the inclusion possessing the 

same elastic properties. 

let us assume that a steady-state plane temperature field is applied to the elastichalf- 
plane y < 0 and, that the boundary Y = 0 is free from external forces. Then the 
stress components satisfy the following boundary conditions : 

cry = zxy = 0, y=o (1) 

The temperature field satisfies the boundary value problem for Laplace equation 
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AT (zc, y) = 0 (2) 

T (5, o) g:,, 

Problem (2) is satisfied by the harmonic function 

T (x, y) = - $ (arct g 7 - arctg --‘_=‘) (3) 

We will analyze the thermoelastic stresses according to p]. In order to solve the prob- 

lem it is sufficient to determine the Muskhelishvili functions @ (z) and w (z), holomor- 

phic in the lower half-plane. 

Extending @ (2) analytically into the upper half-plane according to the formula 

0 (2) = - ;D (2) - 2 0’ (2) - T(z), y > 0 

we express Y (2) in terms of CD (2) 

Y (2) = - d> (2) - 5 (2) - 2 0 (z), y < 0. 

Thus. all the desired quantities can be determined if we know the expression for the func- 

tion CD (z), extended to the entire plane. For the stress components we obtain 

k = aE / 2(1 -v), z = x + iy, 2=x 

T(z,;) = -$.jln _&=&ln -+I 

Substituting this into (l), we obtain the boundary condition for 

function Q, (2) 

- iy 

the determination of the 

s 
‘f!Lpd,=_Z& 

t 
L 
a-z 

+ A) 

The solution of the problem (5) has the form 

CD(z)= -~[In~++j&-i-~)Sgn~l 

oy - iZ,, = CD (z) - CD (;) + (z - ;) q - kT (z, i) - k i $- dz (4) 

Let us compute the stresses. We have 

Obviously, all the stress components vanish at the boundary. 
We turn to the second half of the problem. The domain D, in which the phase trans- 

formation occurs, is bounded from above by the segment (- n < II: < a) and from 
below by the curve y, determined from the equation 

Z’ (G Y) = T, 
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where (T, is the phase transformation temperature. After transformation, this equation 
takes the form 

x2 + (y - b)2 = r2 r2 = a2 + b2, b = - ctg x $-- 

The boundary of the haif-plane is free of loads, i. e. 

uI/ = ‘c,v = 0, y=o (6) 

The all around volume expansion can be described with the aid of an additional fictiti- 

ous applied temperature field 
(z, Y) E D 

(~,Y)FD’ ‘<’ 
The points of the domain D tend to undergo the free displacements 

u* + iv, = czr02 / 2(h + p) 

Let u1 $ iv, correspond to the displacements of the points of the domain D and let 
t+ i- iv, correspond to the displacements in the remaining part of the half-plane.Then, 
on the contour y 

ul + iv1 = u2 + iv2 - 
UT0 

2 @+P) 
t, tET (7) 

In addition, we have the continuity conditions of the normal forces on passing across the 
curve y 

IX, + iY,l, = IX, + iY,12 

We assume that the stress components tend to zero at infinity while the displacements 
remain bounded. Introducing the functions ‘pi (z) and qi (z) which describe for i =l 

the behavior of the material in the domain ~3 and for i = Z the behavior in the remain- 

ing part of the lower half-plane, these functions will be holomorphic in D and in the 

remaining part of the lower half-plane, respectively. 

We rewrite the boundary value problem (6)-(g) using the above functions 
-- 

‘Pi(t)+tcp,‘(t)+~~(t)=o, -co<t<m, i=1,2 (9) 
-- 

‘pl (t) + 4% (t) + 91(t) = 02 (4 t ti?-@ i- $2 (% t E T (10) 
- - 

WlW - WI' (t) - +1(t) = WQ @> - tcp,'(t) - $2 (t) + g(t) (11) 

Relation (11). taking into account (lo), can be reduced to the following form : 

(x + IN%(t) - cp*Wl - g (4 (12) 

If the functions cpi(z) are extended into the regions in the upper half-plane symmetrical 
with respect to the domain D and to the domain complementary to the lower half-plane, 

with respect to the abscissae, according to the formula 

‘pi(z)= -zcp,‘(z)-$ (a), y>o 

then, we will have 

*i (2) = - F-i (2) - Z(pi’ (4, Y<O 

and condition (10) can be transformed into the form 
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Taking into account that (pi(?) are the boundary values of the functions cpi(z), holomor- 
phic in the domain D + D and the remaining part of the plane, respectively, we can 

rewrite the previous equality in the following manner : 

(13) 

Combining (12) and (13), we can observe that the function 

pie~wise-holomorphic in the entire plane, satisfies the conditions (12) and (13) if we 
assume g, (2) = cpl(s) for z inside 7 -b y and cp (zf = Q(Z) for z situated outside 

y + 7. In the case under consideration 

cpw= -& (ln15(z) + la26(z))++[(&b+ ib)ln2 5(4--- 

Ab In2 5 {- ib), 5 (2) := g=& 

In this case, lni< differ from each other by the fact that the lines of discontinuity of 

the imaginary parts are y and 5, respectively. Differentiating (14), we obtain the ex- 

pression for CD (2) = cp’(z). 
Knowing the form of d[, (z), we can write the expressions for the stress components. 

The form of 6, presents interest since CT y = r,v = 0 for y = 0, We have 

20, = 30 (2) + 3@ (2) + a, (z’) + 8 (2) - (z - z>t~DI(Z)- W (z)l 

and at the boundary y = 0 we have 

IXl<U 
Ixl>a’ 

Bl=4r2(1i_ --$n$$, B, = B1 - 4r= 

Here, B1, Ba, Cl, Ca are real constants. 

Fig. 1 

The form of the curves y = os (z) for z > 0 are 
represented in Fig. 1 by thin lines for b = - 1, by 
heavy lines for 21 = 0 and by broken lines for b = + 1. 
The component o,of the stress tensor as a function of 
2 and y has singularities at the boundary of the half- 
plane at the points y = 0, cc = &- a . When the tem- 

perature T, increases, these singularities give rise to infinite tensile stresses which cause 
cracking of the material near these singularities. In the real body plastic zones appear 
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near these points and the suesses in these zones are redistributed and smoothed out.The 
singularities are caused by the fact that the contour y reaches the free boundary and 
they represent a case different from the case in which the region occupied by the inclus- 

ion is internal. 
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Toupin [l] proved that the stresses in a cylindrical rod, caused by application of 
a self-equalizing load at the endface, decrease exponentially with distance from 

the endface. An estimate has been obtained for a constant in the exponential in 
terms of the smallest natural vibrations frequency of an elastic cylinder. 

A determination of the energy decay rate is given below for bodies of arbitrary 

shape and its estimate is given in terms of some characteristics of the body geo- 
metry, including the Poincard and Korn constants of the cross section. These con- 

stants are known in the case of a circular rod and the estimate is given in num- 

bers. 

The dependence of the energy decay rate on the body shape is examined. It 

is shown that for cone-type bodies a powerlaw estimate holds for the energy 
decay which goes into an exponential estimate in the iimit as the cone degene- 

rates into a cylinder. Analogous estimates for the stresses result from the estim- 
ates for the energy. 

1. Determinrtlon of the energy decry rata, Within the framework 
of a geometrically linear theory, let us generally consider an inhomogeneous, anisotropic 

and physically nonlinear elastic solid (see [Z]). We refer the undeformed state of the 

solid to a Cartesian coordinate system z ’ s 2, za (the Greek superscripts a, p, y, . . . 
take on the values 1, 2). 

Let the part of the solid in the half-plane J: > 0 be load-free and let the state of 
stress be caused by some external effects on the part of the solid in the half-plane z < 

0, Further we will study the parameters independent of the nature of these effects, there- 
fore without limiting the generality, it can be assumed that the deformation of the body 
in the ic > 0 half-plane is caused by some surface forces applied in a section of the 

solid by the z = 0 plane. 


